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THE PROPER VIBRATIONS
OF THE EXPANDING UNIVERSE

by ERWIN SCHRODINGER

§ 1. Introduction and summary. Wave mechanics imposes an a
priori reason for assuming space to be closed; for then and only then
are its proper modes discontinuous and provide an adequate descrip-

~ tion of the observed atomicity of matter and light. — Einsteins
_ theory of gravitation imposes an a priori reason for assuming space
| to be, if closed, expanding or contracting; for this theory does not
- admit of a stable static solution. — The observed facts are, to say
- the least, not contrary to these assumptions.

This makes it imperative to generalize to expanding (or contract-

- ing) universes the investigation of proper vibrations, started for the

" the static cases (Einstein- and De Sitter-universe) by the

present writer and two of his collaborators 1). The task is an easy one.
The broad results are largely (in part even entirely) independent of
the time-law of expansion. In the cases of main practical interest, i.e.
with the present slow time rate of expansion and with wave lengths
small compared with the radius of curvature of space (R), thev are
the following.

For light: when referred to the cusloraary co-moving coordinates,
an arbitrary wave process exhibits essentially the same succession of
states as without expansion. Briefly, the wave function shares the
general dilatation. Hence all wave lengths increase proportionally to
the radius of curvature. — The #ime rate of events is slowed down. It
is, in every moment, proportional to R-!. Moreover all intensities are
affected by a common factor such as to make the total energy of an
arbitrary wave process proportional to R-!,

For the material particle the broad results are these: a strictly
monochromatic process (i.e. a proper vibration) again shares the
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common dilatation, so that its wave length A is proportional to R, as 4
before. From the changing & the changing frequency is calculated by %
de Broglies formula. This implics different frequencies to be §
affected by different factors. Thercfore an arbitrary wave function
can no Jonger be said to simply share the common dilatation. But 1
sincede Broglie’s dispersion formula persists, the familiar con--."
nection (momentum =='"4/2) between linear group velocity (= particle 3
velocity) and wave length is also preserved, which causes the former

or more precisely the momentum, to decrease proportional to R-1,
Asregards the amplitudes, the most reliable information about them,
valid for any particle wave function whatsoever, is this, that the
normalisation is rigorously conserved during the expansion.

These are the broad results. A finer and particularly interesting
phenomenon is the following.

The decomposition of an arbitrary wave function into proper

vibrations is rigorous, as far as the functions of space (amplitude- &

functions) are concerned, which, by the way, are exactly the same

as in the static universe. But it is known, that, with the latter, two 3 _5
frequencies, equal but of opposite sign, belong to every space func- 2

. tion. These two proper vibrations cannot be rigorously separated in

the expanding universe. That means to say, that if in a certain $&

moment only one of them is present, the other one can turn up in the
course of time.

Generally\speaking this is a phenomenon of outstanding import-
ance. With particles it would mean production or anihilation of
matter, merely by the expansion, whercas with light there would be
a pro ien of light travelling in the opposite direction, thus a sort
of reflexion of light in homogeneous space. Alarmed by these pros-
pects, I have investigated the question in more detail. Fortunately
the equations admit of a solution by familiar functions, if R is a
linear function of time. It turns out, that in this case the alarming
phenomena do not occur, even within arbitrarily long periods of time.
Waves travelling in one direction can be rigorously separated from
those travelling in the opposite direction. The results for D’A e m-
berts equation (light) and G ordons equation (material part-
icles), which have been used throughout in this paper for the sake
of simplicity, are given in scct. 5 and 6 respectively. I have confirm-
ed the results with Diracs equation, but reserve it to a sub-
sequent paper.
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Forall I have found hithertoo I would conclude, that the alarming

| phenomena (i.e. pair production and reflexion of light in space) are
+ not connected with the velocity of expansion, but would probably be

caused by accelerated expansion. They may play an important part
in the critical periods of cosmology, when expansion changes to con-
traction or vice-versa.

§ 2. The wave equation, tts conservation theorem, its general solution.
The familiar wave equation of the second order

— Ayt By = (1

(w == O for light

w = Zrmc/h for material particles)

is to be regarded as the covariant equation

Al V=) rwev=o 0
xg

Py s B+ pP = \/_g -

specialized for the line element
ds?® = gogdx,dxg = — dx? — dxf — dx? + c2df> (3)
The line element of the non-static universe can be written 2)
ds? = — R%[dy? + sin? y (d9? + sin? § do?)] - 242 (4)

R(t} is the radius of spatial curvature at time ¢, the function being left
open. ¢ is a constant. ¢, §, ¢ are the well-known co-moving angular
coordinates, they are constant for a nebula without peculiar motion.

With (3 equ. (2) reads

- 1 0 ay>
—2 rJ -3 _ 3 2 = (J. 5
—~R2K[Y 4+ 5 R at(R ) +ury =0 (5)
K [....]is the differential operator of the second order of which the

eigenfunctions are the spherical harmonics, generalized to three di-
mensions *). It is self-adjoint, with the density function sin?y sin 9.
Its eigenvalues are — n(n + 2), withn =0, 1, 2, 3,

Equ. (5) admits of a genuine conservation-law. Multiply its left by

*} See A.P. p. 323, equ. (2. 3).
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¢* sin? y sin & R%2 d9dedy, from the result subtract its complex ¢on-

Jugate and integrate over the wholc space. You get

o~ 1k
52/// ((.]J* %lii —¢ _8;; R sin? y sin § d9dedy = 0. 6 4

The bracket-expression is Just what, with the force-free Gordon- 3
equation, corresponds to the density of probability (or electricity).

Thus for an arbitrary material wave function the normalization is

strictly conserved during the expansion. (I have confirmed this result §
alsofor Dirac’s cquation). In the case of light § is, properly speak- }

ing, real and equ. (6) becomes, properly speaking, trivial.

The general solution of (5) is accomplished by the classical method

of separation of variables. Put

Yo 8,2 0) = wln 9, %) A1), U

o being an eigenfunction of K, known from A.P. For f(¢) you obtain ‘
d df uln |- 2) ¥

=3 & (p3fl) | ol 2,2/ :

R i (R dt) b 2 [+ 2u?f=0. 6 &

Takein (7) for f(¢) a linear aggregate, formed of two independent solu- §

tions of (8) with the help of two arbitrary constants. Form an infinite
of all the solutions like (7). The series can, in the familiar way, be
adapted to an arbitrary initial state. What becomes of one of its
members in the course of time is independent from all the rest. If at
the outset only one was present, that will remain so. We are thus in
face of a geluine decomposition into proper vibrations, although the
time-factors) f(#) are in general not trigonometric functions. They
would, of cpurse, assume and re-assume this form in the moment
when as often as R(¢) would cease to vary and would remain
constant for a time, and during such time every proper vibration
would asssume the frequency due to it in that static universe. For
light (. = 0) all these frequencies are inversely proportional to R.
We have quite intentionally called one proper vibration the term
containing one particular spatial function w, but both solutions of (8).
~The latter correspond to what with R — Const. would be cos 2nvt
and sin 2nv¢; or, alternatively to ¢27™ and e—2"", Of course the two
parts keep clear of each other also in the general case. But for assign-
ing a quite general physical meaning to this separation, one would
have to know, that an /(¢) which during a period of constant R (or
very slowly varying R) had the form (or approximately the form)
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2™ will re-assume (or approximately re-assume) the form A2
— and not Ae*™¥* +4- Be2™" — whenever R(f), after an inter-
mediate period of arbitrary variation, returns to constancy (or to
approximate constancy). I can see no reason whatsoever for f(t) to
behave rigorously in this way, and indeed I do not think it does.
There will thus be a mutual adulteration of positive and negative
frequency terms in the course of time, giving rise to what in the intro-
duction I called , the alarming phenomena”. They are certainly very
slight, though, in two cases, viz. 1) when R varies slowly 2) when it is
a linear function of time (see the following sections).

A second remark about the new concept of proper vibration is,
that it is not always invariantly determined by the form of the
universe. The separation of time from the spatial coordinates may
succeed in a number of different space-time-frames. For De Sit-
ters universe I know three of them. Besides the static one, for
which P. O. Miiller (lc.) has redently given the proper vibra-
tions, there is an expanding form with infinite R and an expanding
form with finite R *). A proper vibration of one frame will not trans-
form into a proper vibration of the other {rame, for the separation of
variables is destroyed by the transformation.

*) From De Sitters line-element in static form
ds* = — R [dy? + sindy (d9* + sin?§ do¥)] + K3, cos?y de?

the transformationof Lemaitre (J. Math. and Phys. M.1.T., 4, 188, 1925) and R o-
bertson (Phil. Mag. 5, 835, 1928)

y = Rytgyet t=1t+ lg cos
gives the expanding flat form
dst = — e [dr? + 72 (A9 + sin*Hdpt)] + R, 41
The following transformation

gy = % Sin ¢’ = Sin f cos

or
sin y = sin " Cost’ Tgt = Tgt'(cos y')™!
gives the expanding curved form

dst = — R%,(Cos )3 [dy"* + sin® y’(49* + sind Bdg¥)) + R, di's,

(In this footnote R, is a constant length and the cosmical times ¢, ¢, ¢ are dimen-
sionless.)



§ 3. The secular variation of amplitudes. In equ. (8) introduce a
new independent variable < by

dv = R3d¢, 9)

giving you
555 = — [c*n(n 4 2)R* -+ 22 Re}f. (10)

This is the equation of a pendulum with slowly varying constants.
The varying frequency is

Se
, o R ’ nin - 2) _— (1)

2 R2

The laws of adiabatic transformation will apply, provided
R7'dR/d~ is small compared with v', or

1 11 v ¢ /n'(;i'JF 2) _

R4Rdt < [ '/ e +u2=v, (12)
say. In the cases of practical interest this is amply fulfilled, for
2rR/n is the wave length, hence # is a very large number and v is, by
the last equation, the true frequency both in the case of light (@ = 0)
and.in thecaseof De Broglie waves (w = 2rmc/h). Following
Ehrenfests law of adiabatic transformation the energy of the
pendulum will exhibit a sccular variation proportional to v’. This
means v'?f2 ~ v’ or

) |
2 0 !
f v w3’ (13)
This is immediately applicable only, when f is real, as it is with a
pendulum.
As a first application, consider the most general complex solution
of (10), which is certainly of the form

,’ - Ae2m‘vt 7*_ ]35"'2"’“, (14)
with 4, B and v varying slowly with time, the latter according to the
last equation (12). Since (10) has real cocfficients, the real and the

imagingry part of (14) are themselves solutions and we can apply
(13) to them. This gives by a simple calculation

AP+ IBR~ . (15)
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On the other hand we can apply our conservation theorem from § 2
to (14) and obtain *)
1
(AP —|BE)~ . (16)

From (15) and (16) follows, that | 4 |2 and | B |2 themselves follow
the same law. Therefore if e.g. B was initially zero, it will remain
zero. We have the important result:

To the degree of approximation of Ehrenfests theorem there is
no mutual contamination of positive and negative frequency solutions.

A second application is to the energy density of light. With
D’Alemberts equation it is proportional to v22, therefore we
have

energy density ~ (17)

v
R
which gives the total energy of a proper vibration proportional to v
or to R

If one choses to speak of an energy density of material waves, the
law (17), i.e. ~ v/R?, also holds for it — to the degree of approxima-
tionof Ehrenfests theorem. But thereisno point in that, since
the conservation of normalization in this case gives more complete
and rigorous information.

§ 4. Group velocity. We now turn to investigate the most im-
portant feature arising from the superposition of different proper
vibrations. Since everyone of them will show a secular phase-shift,
we have to investigate, whether or to what extent this might inter-
fere with the fine interlocking of phases that produces group-velocity.

Assume a solution of (10) in theform

fﬂ = A ﬂe~i0” (\ 1 8)

with real A, and 9, the first varying slowly, the second approxima-
tely linearly with , i.e. with two coefficients that vary slowly. (We
have proved in the preceding section that these assumptions are

*) A more direct way of proving (16) is to apply to the real and to the imaginary part
of (14) the relation

dfy ah
f i fa g = Const.

which holds for any two solutions f, and f, of equ. (10).



legiumate). Lhe subscript # refers to the integer occurringin (10). An
appropriate space function e, to produce with f, a progressive wave x
along a great circle is ¢4 (se¢ A.P. p. 328, equ. 3.3; the factors con- ;

taining & and y are immaterial here). So we contemplate

l‘l"’u - /“g”‘d’ = A nci(”sbh 19")-

By equating to zero the differential of the exponent, we find the #&
phase-velocity 45, which, for the moment, we shall measure as ay |

angular velocity and with respect to the variable 1. Thus

1 dYy, i dlgf,

L Tl )y g

n dv  n dr

The last equation holds with neglect of the variation of the amplitude 3 K

A, (already known to vary very slowly).

The group-velocity c;; (again angular and with respect to 7) s
obtained by equating to zero the second differential of the phase,
taken with respect to both t and »n. We get

»_dAY, L dAlgy,
Cor = 4. de (20)

The sign A means quasi-differentiation with respect to the integer n
and the last equation is even safer than in (19), since we may chose
4, initially independent of .

Now make in equation (10) the Riccati transformation

_ Ak

y= (21)
which turns it into
% + y2 + u(n 4 2)R* 4 ¢?u?Ré = 0. (22)
»Differentiate’” this with respect to #:
%X + 29y - 2¢%(n 4 1)R* = 0, (23)
From (19), (20) and (21)
Y = —1inc,, Ay = —i¢,.
Neglecting the variation of group velocity with 1, we get from (23)
ConCly = ﬂ’,tﬁ R4,

n

or, for the frue and linear velocities

n+ 1

n

CopCpp = 2, (24)
Since 7 is extremely large, this is the familiar relation, valid for both
light and De Broglie waves. Since from the last equ. (12) or,
alternatively, from (22) the familiar value is easily deduced for Cohs
the modification of ¢, is likewise unappreciable. Quantitative results
will be obtained in the following sections.

§ 5. Closed solution for light, when the radius is a linear function of
time. In this and the following section we investigate the special case

R =a+ bt (25)
Following (9) we put
| a1 =— 1— (26)
= f (@a+0t)* 7 2b(a + bi)? 2bR?
Hence from (10)
a7 (62"(" 3 o )f —o. (27)
d? 4512 8633
Specialising for light (u = 0) and putting for the moment
6271,(72;‘ 2) = k41, (28)
we have
a?f R4l

@t a0

of which the solutions are
f=+P withg =14 }ik

thus
1 |
f: ——-(a + bt)i‘k|
“I + o { (29)
— F R;ttk J

Since n is very large, % is real, for & is certainly not much larger
than c. Hence the second factor has absolute value 1 and is the oscil-



lating part, whereas the first factor is the amplitude, which in this
particular case is scen to be exactly proportional to R—1,
Two main inferences can be drawn from the solutions (29). If we

treat them as in the preceding section we treated (18), combining 4

them with the space-function "¢, we can write

R
a -+ bt
These two progressive waves, travelling in opposite directions, are,
in the present case, rigorous solutions and will therefore keep rigo-
rously separated for any length of time. No doubt they are not true
exponential waves. If the linear expansion only sets in in a certain
moment and comes to rest in a later moment, then in these two
moments there may be a siall amount of contamination.
Next, we calculate the accurate values of the phase- and group-
velocity from (30). Proceeding exactly as in the preceding section we
find:

: p2 4
Cop = :z ((n(n 4+ 2) — 62)

/ R (1)
Co == C(n - 1) (n(n - 2) — 702')

Thus ¢, is slightly smaller, ¢, is slightly greater than without
expansion. But as long as /¢ is of the order of unity, the effect does
not exceed that of curvature itsell, viz. it is extremely small.

§ 6. The same for material waves. The variable 7 is no longer con-
venient. We therefore return to (8), make the assumption (25) and
introduce in (8) the new independent variable

7 - EL([’}[( e p,[(;d 3 {J,Ct (32)
and the new dependent variable , :
w(z) = zf, (33)

which turns (8) into

d*w I dw k2
@ U =0 34

(#%is the same as in (28)). Sowisa Bessel function of the purely
imaginary order 7&. On inspection it is scen, that both % and z are

}0.5

ei(ud) PN (c2nn 0v2>))r/l;tl.lg (a+bl)]' (30)

enormously great, whereas z/k is of the comparatively moderate
order: actual wave length divided by Compton wave length.
This is the proper working ground for the method of steepest descent,
introduced by P. D e by e *) into this branch of analysis; it has only
to be adapted to the present case of imaginary order. Let us consider
the first kind Hankel function

H}k(z) o Vl/ e—iz sin C—J?C dc , (35)
T:l
the path of integration being primarily —ioc0 -+ 0 > — x> —

—n 4 100. I find the suitable point of steepest descent to be
{=-—m/2 + 1a with
<. k
Sinw = - (36)
z
and the appopriate deformed path of integration to ascend in this
point from right to left under 45°. My result is

HL(2) = (i:)ﬁkﬂf gik(Cotga—a) (37)
() V7z Cos
Thus from (33), if we drop an irrelevant constant multiplier,
[(#) = 27" (Cos o) " e*(Cotea—a) (38)

In order to find the frequency (first in the very small time unit in
which z is the time) we differentiate the phase with respect to z, or
rather 2rz; from (36) we have

1 d 1
— —a)] = o . 39
o [£{Cotg o — )] o Cos a (39)

Thus we see, by the way, that the factor preceding the exponential
in (38) takes proper care of our conservation theorem, for z is propor-
tional to R, by (32). -— The true frequency is

n(n 4+ 2) — (b/c)?
v:%COSazil/ ( I)i’z (

+ p, (40)

whichis De Broglies dispersion formula, including the slight
correction for the finite rate of expansion b (compare with the value
(12), obtained for infinitely slow expansion). We make an explicit

*) See e.g. Courant-Hilbert, Methoden der Matematischen Physik I, 2. Auflage
(Berlin, Springer 1931), S. 455 ff.
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HULC UL Le phase-vcluaty

_ 2rRy ucR |

Cpp == n - Cos « (41)
and evaluate the group-velocity
Co = Ry ! C;”S *odn ) (42
dn uR Cos o )
From the last two formulae
n -1

C/,/, Cgr == " - - 02, (43)

vs'/hich isin so literal agrement with (24)
Cipated.

HZ can. of course, be worked out in the same way and gives the
exponentlal with the negative frequency. So here too as in the ca
of 1¥ght, the positive and negative frequency solutions 'when o rsle
defined, keep clear of cach-other; there js nothing fike a szcuIID:rly
accumulated pair production - at any rate not to the degree o}f]

approximation of our asym ic ich i
; s ptotic formulae, which is an ¢
ppproxin xlremely

as could not have been anti-

.§ 7. Re-stating briefly several useful formulae. By a few examples [
Wwish to show, that the broad features of the wave-aspect sim lifp th
understanding of the expanding universe, e

The nebular red-shift is directly visualisable as the dilatation of all
wax'fe-lengths alongwith R, Itisa thing that happens to every portion
of hgh.t on its journey, along with a dilatation of all its dimgnsion
and with a reduction of jts total energy ; all this is entirel indepe :
dent of the origin of that portion of light. To speak ofa D Z P lpe rrl:
effect Is rather inappropriate, for the thing has nothing to dz)) with
dR/d¢t in the moment of emission or in the moment of observati

_ butonly with the ratio of the R’s of these two moments. o

M_oreoYer to the wave-aspect the slowing down of freely movin
partlclles 1s on the same footing as the red-shift of light, it is just thg
:ﬁd-shxft of De Bro glic waves, Only, since with a particle not

e energy but the momentum varies like 271 it is here the momen
tum that goes with R=1; thus, for slow particles, the velocity - th> ir

energy then with R—2 or witl, Vb df Vs the voiume. Hencg}or Z]nr

' ideal monoatomic gas, filling the universe, we should have

pV ~V~"h or pV'h = const.

showing, that it behaves as on adiabatic expansion.
In certain considerations 3) the observed angular diameter of a dis-
tant object (nebula) and its observed luminosity are of importance.
Draw from the origin (5, = 0) two geodesics of space to the ends of
aline element / (linear diameter of the nebula), situated at a distance
X, oriented in the direction of increasing 9. From the expression (4)
of the line-element the angle 49 between the geodesics is

l
= Rsiny (44)

I in the moment of this construction two light rays are emitted from
the extremities of / in the direction of the two geodesics, they will
follow the geodesics, irrespective of expansion, and meet in the origin
under the angle d9. Thus (44) gives the observed angle, if R and /
refer to the moment of emission. — This is the first of two important
formulae, dueto R.C. Tolm an.

Again let E, be the energy emitted by a nebula during a suitably
large unit of time. ,,Soon’’ after emission it will fill a spherical shell
with thickness C (say). On observation, at angular distance ¥, the
thickness will have increased to CR, /R, if R and R, refer to the
moments of emission and observation respectively. The surface of
the shell in the moment of observation is 4% R2,, sin2 #, the energy,
contained in it then, is E,R/R,,,. Hence the observed energy density
pis

E, R?
P = 4xCRY, sin?y (43)
This is the second of the two important formulae due to T o 1 m a n.

Hubble and Tolmans paper, quoted above, gives a very
careful analysis of how to compare (44) and (45) with observations in
order to decide, whether the cause of the red-shift actually is expan-
sion. The authors add a lucid and open-minded exposition of the
present situation. The task is extremely intricate both from the
observational and from the theoretical side. It is impossible to resume
it in a few lines. In addition to all the rest of complexity, the general
state of affairs in an expanding universe suggests, I think, the belief,
that nebular diameters () and particularly nebular intrinsic lumi-



NOSILES (£o) mught very well themselves undergo, on the average,
some kind of secular variation with . [1 this possibility is envisaged,
the hypothesis of expansion is probably casier to fit in with observa-
tions than any non-expuansional explunation of the red-shift —
although at first sight, i.c. with constant [ and E,, the reverse appears
to be the case.

Received August 21st 1939,
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