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ABSTRACT

Vacuum permittivity, the measure of strength of electric fields in a vacuum, is a scalar function which
depends on the curvature of spacetime. Changes in vacuum permittivity are important for many
investigations. The focus here is on the required change in interpretation of gravitational redshifts.
When curvature changes, photon wavelengths and atomic emissions both change. Atomic emissions
shift at least twice as much as photon wavelengths do. Both must be included to correctly interpret
redshift. For Schwarzschild geometry, redshift equations which include both shifts give a deeper
physical understanding and exactly reproduce the well proven mathematical results of conventional
analyses based on time dilation. For Friedmann geometry, a comparison of photons emitted long ago
to those emitted today predicts that Hubble redshifts result from a universe accelerating in collapse.
This mathematical prediction is compared to supernovae redshift data from Davis et al. and the
SCPUnion2.1 compilation. For the Davis et al. data set of 156 supernovas the best fit was found to
be Ho = −66.5 kms−1Mpc−1 and qo = 1/2+(0.001). The average data error is 0.231 and for these fit
parameters the standard deviation is 0.234. The quality of fit for the SCPUnion2.1 compilation of 580
supernovas is similar, with Ho = −70.2 kms−1Mpc−1 and qo = 1/2 + (0.001). Only Ho and qo were
varied to fit these data. No dark energy is needed when atomic shifts are included. High-z redshift
observations up to 11.9 show that the universe is at least 2000 billion years old. This is more than
a hundred times greater than a typical star’s lifetime suggesting that most dark matter is likely the
residue of stellar and galactic evolution. The time until collapse is estimated to be 9.6 billion years.
The changes in atoms and photons derived here agree with Schrödinger’s discovery that quantum
wave functions expand and contract with the radius of a closed Friedmann universe.
Keywords: cosmology: cosmological parameters — cosmology: dark energy — cosmology: dark

matter — cosmology: theory — gravitation

1. INTRODUCTION

Einstein (1907)1 summarized the status of special rel-
ativity and its implications in the two years since its pub-
lication. At the end of his survey he concluded with a
speculative section on “The Principle of Relativity and
Gravitation.” He considered a uniformly accelerated co-
ordinate system and assumed that locally it is equiv-
alent to a gravitational field. Einstein determined that
Maxwell’s equations in the accelerated coordinate system
(and hence in a gravitational field) are exactly the same
as they are in the inertial coordinate systems of special
relativity, except that “The principle of the constancy
of the velocity of light does not hold . . . the velocity of
light in the gravitational field is a function of place . . . ”
(Einstein 1911)2.

In Maxwell’s equations, vacuum permittivity, ε, is the
scalar that determines the speed of light and the strength
of electrical fields. Einstein’s discovery means that both
the wavelengths of photons and the wavelengths of pho-
tons emitted by atoms change with gravity in special
relativity. Møller (1952), Landau and Lifshitz (1975),
and Sumner (1994) showed that vacuum permittivity
changes with spacetime curvature in general relativity.

Two exact solutions to the theory of general relativ-
ity without a cosmological constant (Einstein 1915) are
examined. One is the static solution by Schwarzschild

wqsumner@gmail.com
1 English translation (Einstein 1989, p 252)
2 English translation (Einstein 1993, p 385)

(1916) for a spherical mass in an otherwise empty uni-
verse. The other is by Friedmann (1922) for a closed,
matter-filled, homogeneous universe. Friedmann’s solu-
tion rapidly expands from a singularity, then slows until
it reaches a maximum size before accelerating back to a
singularity.

In Schwarzschild spacetime, ε is a function of the dis-
tance r from a central mass. At long distances, ε(r)
is close to its flat space value and increases as r gets
smaller. Atomic sizes and the wavelengths of the pho-
tons they emit change with ε. Wavelengths of photons
also change with ε. The redshift equation derived here
using general relativity and the traditional one obtained
using time dilations are mathematically identical despite
making different initial assumptions. Their weak field ap-
proximations are equivalent to an equation derived using
special relativity and the equivalence principle.

In Friedmann spacetime, ε is directly proportional to
the Friedmann radius so it changes with time. As the size
of the Friedmann universe evolves, the changing strength
of the electrical force between charges shifts atomic en-
ergy levels, changing the wavelengths of emitted light.
The wavelengths of photons also change in time but by
a smaller amount. This difference in evolution of atoms
and photons reverses the interpretation of Hubble red-
shift.

The Friedmann universe is now collapsing, a result con-
firmed by modern supernova redshift observations. The
changes in atoms and photons derived here agree with
the conclusion of Schrödinger (1939) that quantum wave
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functions expand and contract proportionally to the ra-
dius of a closed Friedmann universe.

2. MATHEMATICAL MODELS

2.1. Einstein’s Solution

In his study of Maxwell’s equations in an uniformly ac-
celerated coordinate system, Einstein (1907)3 concluded
that the velocity of light in special relativity, c, is reduced
to c∗, the local coordinate velocity of light in the acceler-
ated system. In an accelerated system which corresponds
locally to the gravitational field of a point mass, Einstein
(1989, p 310) found

c∗ = c

(
1 +

Φ

c2

)
, (1)

where Φ is the Newtonian gravitational potential

Φ = − km

r
. (2)

m is the mass of the object creating the gravitational
field at a distance r. k is the gravitational constant.

The connection between Einstein’s result, equation (1),
and the strength of the electrical field comes from the
definition of relative vacuum permittivity ε,

ε =
c

c∗
. (3)

Combining equations (1), (2), and (3) gives Einstein’s
value for ε4

ε (r) =
1(

1 − km

rc2

) . (4)

2.2. Schwarzschild Solution

The Schwarzschild solution in general relativity may
be written (Landau and Lifshitz 1975, p 301)

ds2 =

(
1− 2km

rc2

)
c2dt2 − dr2(

1− 2km

rc2

) −
− r2(dθ2 + sin2θ dφ2).

(5)

Møller (1952, p 308) and Landau and Lifshitz (1975, p
258) studied the effects of curved spacetime on Maxwell’s
equations. Both proved that in a static gravitational
field the electromagnetic field equations take the form of
Maxwell’s phenomenological equations in a medium at
rest with

ε(r) =
1
√
g00

. (6)

3 English translation (Einstein 1989, p 252)
4 Vacuum permittivity is defined by NIST to be constant with

the value εo = 8.854187817 . . . x10−12 Farads/meter. But as Ein-
stein showed, vacuum permittivity is not constant. When the nu-
merical value for vacuum permittivity for a curved spacetime is
needed, the product ε×εo is used with εo expressed in appropriate
units. ε is often called relative vacuum permittivity.

g00 is the time component of a static metric tensor gµν .
5

Einstein’s pre-general relativity result, equation (4), is
the first approximation to the exact relativistic equations
(5) and (6),

ε(r) =
1
√
g00

=
1√(

1− 2km

rc2

) ≈ 1(
1 − km

rc2

) . (7)

2.3. Friedmann Solution

Friedmann (1922) published a closed universe solution
to Einstein’s theory of general relativity without a cos-
mological constant. The Friedmann universe rapidly ex-
pands from a singularity, slowing until it reaches a max-
imum size before accelerating back to a singularity.
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Figure 1. Friedmann’s solution for a closed universe with α = 1
in equation 8. For this cycloid scaled by α for our universe see
Figure 7.

Friedmann assumed the metric,

ds2 = c2dt2−

− a2(t)

[
dr2

(1− r2)
+ r2

(
dθ2 + sin2θ dφ2

)]
,

(8)

and homogeneous, incoherent matter, conserved in
amount, and exerting negligible pressure. His solution
is the cycloid shown in Figure 1,

a =
α

2
(1− cosψ) c t =

α

2
(ψ − sinψ), (9)

where α is a constant and 0 ≤ ψ ≤ 2π (Tolman 1934).
Sumner (1994) studied Maxwell’s equations in this

Friedmann universe and found that ε changes in time
with spacetime curvature,

ε (t) = a(t). (10)

a(t) is radius of the Friedmann universe defined above
with α = 1.

5 This result is valid for every static metric, not only the
Schwarzschild metric.
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2.4. Local Mathematical Coordinates

The effects of varying spacetime curvature in nature
are commonly explained with gravitational forces or are
simply ignored. The extraordinary success of the special
theory of relativity is a confirmation of this approach.
But spacetime is never precisely flat as ubiquitous grav-
ity clearly shows. Flat spacetime exists only in mathe-
matical models. Every spacetime in nature is curved.

To understand the effects of spacetime curvature on
atoms and photons, a coordinate system that includes
spacetime curvature is necessary. The method used
by Einstein, Møller, Landau, Lifshitz, and Sumner is
adopted where a local pseudo-Cartesian coordinate sys-
tem is used with the vacuum permittivity ε(xµ) deter-
mined by the general relativistic geometry at that space-
time point. Specifically,

ds2 =
c2

ε2(xµ)
dt2 −

[
dr2 + r2

(
dθ2 + sin2θ dφ2

)]
.

(11)
If the variation in ε(xµ) in the region of interest is

“insignificant”, equation (11) is just the metric of spe-
cial relativity with a velocity of light c/ε(xµ). If ε = 1
the result is special relativity with spacetime curvature
ignored.

2.5. Changes in Atoms and Photons

Photon wavelengths, atomic sizes, and the wavelengths
of photons atoms emit change with ε. In the following
equations κ (the Greek letter kappa) is to be replaced by
either the radial coordinate r for Schwarzschild geometry
or the time coordinate t for Friedmann geometry. The
logic and math are the same for each geometry.

The Bohr radius ao of a hydrogen atom in its ground
state at κ is 6

ao(κ) =
4πεo ε (κ) ~2

me2
. (12)

εo = 8.854187817 . . . x10−12 F/m (farads per meter) is
the defined value of εo. m is the mass of the electron, e
is the charge of the electron, and ~ is Planck’s constant
h divided by 2π. These are assumed to remain constant
as spacetime curvature changes.

The change in Bohr radius ao as κ changes is

ao(κ1)

ao(κ2)
=
ε (κ1)

ε (κ2)
. (13)

The characteristic wavelength λe emitted by a hydro-
gen atom during the transition between the principle
quantum numbers n2 and n1 is

λe(κ) =
8 ε2o ε

2 (κ)h3 c

me4

(
n21 n

2
2

n22 − n21

)
. (14)

c in equation (14) comes from the defining relationship
between λ and ν, λ ν = c.

The change in λe(κ) as κ changes is

λe(κ1)

λe(κ2)
=
ε2 (κ1)

ε2 (κ2)
. (15)

6 See standard texts, e.g. Leighton (1959).

Consider the Compton wavelength, λc, of a particle
with mass mp,

λc(κ) =
h

mp c∗(κ)
=
h ε (κ)

mp c
. (16)

The change in λc(κ) as κ changes is

λc(κ1)

λc(κ2)
=
ε (κ1)

ε (κ2)
. (17)

The Compton wavelength of a particle is equivalent
to the wavelength of a photon of the same energy as
the particle. Compton and photon wavelengths have the
same ε(κ) dependency that the Bohr radius has. The
wavelength change for a photon is

λ(κ1)

λ(κ2)
=
ε (κ1)

ε (κ2)
. (18)

2.6. Gravitational Redshift

The following notation is used. The wavelength of a
photon λ emitted at κ1 and examined at κ1 will be writ-
ten λ(κ1, κ1). The wavelength of a photon λ emitted at
κ1 and examined at κ2 will be written λ(κ1, κ2).

The traditional redshift z formula assumes that atomic
emissions do not evolve, λ(κ2, κ2) = λ(κ1, κ1), but that
photons do (Equation (18)),

z =
λ(κ1, κ2) − λ(κ1, κ1)

λ(κ1, κ1)
=

ε(κ2)

ε(κ1)
− 1. (19)

κ2 is the observer’s location and κ1 is the location at the
time of emission.

Since atomic emissions do evolve with spacetime ge-
ometry, a new redshift variable ζ (the Greek letter zeta)
is defined to match what is done experimentally,

ζ =
λ(κ1, κ2) − λ(κ2, κ2)

λ(κ2, κ2)
. (20)

κ2 is the observer’s location and κ1 is the location at the
time of emission.

ζ =
ε(κ1)

ε(κ2)
− 1. (21)

2.7. Schwarzschild Redshift

The Schwarzschild metric describes the spacetime ge-
ometry around a spherical mass.

Substituting ε(r) from equation (7) into equation (21)
gives

ζ =

√(
1− 2km

r2c2

)
√(

1− 2km

r1c2

) − 1. (22)

This equation is the same as conventional derivations
using time dilation with the Schwarzschild metric. See
e.g. Weinberg (1972, p 80), En.wikipedia.org (2017). All
experiments that confirm equation (22) confirm the rea-
soning presented here.
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For sources and receivers separated by small distances,
the weak field approximation to this exact equation is

∆ν

ν
≈ km

r2c2
h, (23)

where ν is the frequency of the photon emitted, k is the
gravitational constant, m is the mass of the earth, r is
the distance from the center of the earth to the source,
c is the speed of light, and h is the vertical separation
between source and receiver.7

2.8. Friedmann Redshift

Substituting ε(t) = a(t) into equation (21) gives the
redshift ζ for Friedmann geometry,

ζ =
a(t1)

a(t2)
− 1. (24)

Hubble redshift (ζ > 0) implies a(t1) > a(t2). The
universe was larger in the past, a(t1), than it is now,
a(t2). This puts us somewhere on the collapsing half
of the curve in Figure 1. The logic is simple. Since
Hubble shifts are red (ζ > 0), the Friedmann universe
is collapsing. If Hubble shifts were blue (ζ < 0), the
Friedmann universe would be expanding.

3. ANALYZING HUBBLE REDSHIFTS

The analysis of redshift observations must include the
changes in atomic emissions in addition to the changes
in photons. Astronomers measure the redshift defined by
ζ, equation (24). The following derivation is similar to
the one made when atomic evolution is ignored and the
universe is assumed to be expanding (Narlikar 1983),
but is different because ζ not z describes the observed
redshift and some choices in signs are made differently
when the universe is contracting (Sumner and Vityaev
2000). It is assumed that observed photons were emitted
after contraction began.

The mathematical coordinate distance r to a source
can be shown to be a function of the observed redshift
ζ of the source and the deceleration parameter qo in the
following way.

Setting ds = 0 in the Friedmann metric, equation (8),
gives

c dt =
−a(t) dr

(1 − r2)
1/2

. (25)

The source is located at the spatial coordinates
(r1, 0, 0) with emission at time t1 and the observer is
at (0, 0, 0) with reception at time t2.

c

∫ t2

t1

dt

a(t)
=

∫ r1

0

dr

(1 − r2)
1/2

= sin−1 r1. (26)

Substituting a(t) and dt calculated from the Friedmann
solution, equation (9), gives

r1 = sin(ψ2 − ψ1). (27)

The Friedmann equation for the closed universe is
(Narlikar 1983, p 113)

ȧ2 = c2
(α
a
− 1
)
. (28)

7 Will (2014, p 15) has a good explanation how this approximate
equation can be derived without general relativity.

The Hubble constant H and the deceleration parame-
ter q are defined by

H(t) =
ȧ(t)

a(t)
,

ä(t)

a(t)
= −q(t)H2(t). (29)

“ ˙ ” indicates time derivative. H is negative and q
is greater than 1/2 for a closed, collapsing universe.
Present day values are denoted by Ho and qo.
α, the constant in equations (9), may be written

(Narlikar 1983, p 114)

α =
2qo

(2qo − 1)3/2
c

|Ho|
. (30)

Solving for ψ2 and ψ1 in terms of ζ and qo and substi-
tuting into equation (27) gives

r1 =
(2qo − 1)

1/2

qo

[
ζ − (1 + ζ)(1 − qo)

qo

]
+

+
(1 − qo)

qo

{
1 −

[
ζ − (1 + ζ)(1 − qo)

qo

]2}1/2

.

(31)

The flux f of photons is related to the luminosity L
of the source and to its luminosity distance DL by the
equation

f =
L

4πD2
L

. (32)

DL is determined in the following way. Calculate the
observed flux f by noting that L, the actual luminosity
of the source, is changed by a factor of a(t2)/a(t1) be-
cause of the apparent change of the photon’s energy and
changed by another factor of a(t2)/a(t1) because of the
changes in time in the local metric, equation (11). The
distance to the source is r1 a(t2). This gives an observed
flux of

f =

L
a2(t2)

a2(t1)

4πr21a
2(t2)

. (33)

Combining equations (32) and (33) using (24) gives

DL = r1 a(t2) (1 + ζ). (34)

a(t2) is (Narlikar 1983, p 114)

a(t2) =
−c
Ho

1

(2qo − 1)1/2
. (35)

Substituting equations (31) and (35) into (34) gives

DL =
−c
Ho

(1 + ζ)

qo

{[
ζ − (1 + ζ)(1− qo)

qo

]
+

+
(1− qo)

(2qo − 1)1/2

(
1−

[
ζ − (1 + ζ)(1− qo)

qo

]2)1/2}
.

(36)

The relationship between distance modulus (the dif-
ference between the apparent magnitude m and absolute
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magnitude M of a celestial object) and luminosity dis-
tance, DL, is

m−M = 5 log10

(
DL

10 parsecs

)
. (37)

The Hubble constant Ho (negative for the contract-
ing half of the curve) and the deceleration parameter qo
(which must be > 1/2) characterizing a closed Fried-
mann universe are then varied to find best least-squared
fits to Hubble redshift observations of ζ and m−M using
equations (36) and (37).

4. SUPERNOVAE REDSHIFTS

Figure 2. SCPUnion2.1 supernovae redshift data. Solid line is the
least-squares fit using the Friedmann solution with the parameters
Ho = −70.2 kms−1Mpc−1 and qo = 1/2 + (0.001). Three SNe 1a
at redshifts greater than 1.5 are also plotted (see text).
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Figure 3. Supernovae redshift data from Davis et al. Solid line
is the least-squares fit using the Friedmann solution with the pa-
rameters Ho = −66.5 kms−1Mpc−1 and qo = 1/2 + (0.001). The
straight dashed line was added to clarify the upward curve (“ac-
celeration”) of the data.

Two supernovae data sets are analyzed here, the
SCPUnion2.1 compilation (Suzuki 2012)8 and the set

8 These data were downloaded from http://supernova.lbl.
gov/Union/figures/SCPUnion2.1_mu_vs_z.txt

from Davis (2007)9 which combines data from Wood-
Vasey (2007) and Riess (2007).

For the SCPUnion2.1 data for 580 supernovas the best
fit is Ho = −70.2 kms−1Mpc−1 and qo = 1/2 + (0.001).
This fit is shown in Figure 2. The average data error is
0.223 and for these fit parameters the standard deviation
is 0.272. Although not used for fitting, three SNe 1a
(with spectroscopic evidence for classification) at redshift
greater than 1.5 are also plotted in Figure 2 (Rodney
2012) (Rubin 2013) (Jones 2013).

For the Davis et al. data set of 156 supernovas the best
fit is Ho = −66.5 kms−1Mpc−1 and qo = 1/2 + (0.001).
This fit is shown in Figure 3. The average data error is
0.231 and for these fit parameters the standard deviation
is 0.234.

Figure 4 shows the percentage differences from best fit
for other choices of Ho and qo. For both data sets the
least-squared fits are better the closer qo is to 1/2.

Figure 4. The fit parameter space for Ho and qo. The solid
line shows the best fit for a given choice of Ho or qo. Percentage
contours are the differences from the best fit shown by the black
dot. See text for meaning of 11.9.
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Figure 5. Standard deviation for best fits for smaller values of
qo for each data set. The corresponding best fit Ho for each qo is
indicated on the top axis. These data establish no lower limit for
δ, where qo = 1/2 + δ, δ > 0.

Figure 5 illustrates standard deviation for best fits for
smaller values of qo for each data set. These data es-
tablish no lower limit on δ, where qo = 1/2 + δ, δ > 0.
δ = 0.001 is an arbitrary small number in the range where
there is little further improvement in the quality of fit
with smaller δ’s.

9 These data were downloaded from http://braeburn.pha.jhu.
edu/~ariess/R06/Davis07_R07_WV07.dat

http://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt
http://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt
http://braeburn.pha.jhu.edu/~ariess/R06/Davis07_R07_WV07.dat
http://braeburn.pha.jhu.edu/~ariess/R06/Davis07_R07_WV07.dat
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5. AGE OF THE UNIVERSE

If qo were known, the age of the universe, to, could be
estimated from the magnitude-redshift data (Narlikar
1983, p 114) (with two signs changed to reflect contrac-
tion),

to =
−1

Ho

[
1

2qo − 1
+

qo

(2qo − 1)
3/2

cos−1 1− qo
qo

]
. (38)

A value for cos−1 corresponding to the fourth quadrant
is assumed.

Since (2qo − 1) ≈ 0, equation (38) cannot be applied,
but it does give a way to estimate a minimum age of
the universe if a maximum value qo max for qo can be
estimated. This can be done using a maximum observed
redshift, ζmax and assuming that the light was emitted
just when the universe was at its maximum size, a(tm).
a(tm) is related to today’s parameters by (Weinberg
1972, p 483),

a(tm) =
2q0

2q0 − 1
a(t0). (39)

Combining with equation (24) gives

qo max =
1 + ζmax
2 ζmax

. (40)

Substituting qo max and Ho in equation (38) then gives
an estimate for the minimum age of a collapsing Fried-
mann universe. This is a conservative estimate since it is
very likely that the light was emitted after the universe
reached its maximum size.

Ellis (2013) has measured redshifts in the range of 8.6
to 11.9 utilizing a sequence of near-infrared Wide Field
Camera 3 images of the Hubble Ultra Deep Field. The
open circles in Figure 4 mark the maximum value 0.54
that q0 can have and still observe a redshift of 11.9.

Figure 6 illustrates the relationship of minimum age to
maximum observed redshift determined in this way for
both data sets.
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Figure 6. Minimum ages of a Friedmann universe for maximum
observed redshifts. The solid line uses H0 from Davis et al. data
and the dotted line uses H0 from SCPUnion2.1 data. The redshifts
indicated are from Ellis et al.

From these redshift measurements the universe is at
least 2000 billion years old.

6. TIME UNTIL COLLAPSE

2
3 |Ho|−1 estimates the time until collapse, tc, of the

Friedmann universe when qo is close to 1/2. 10

Ho = −66.5 kms−1Mpc−1 gives tc = 9.80 billion years.
Ho = −70.1 kms−1Mpc−1 gives tc = 9.30 billion years.
tc = 9.6 billion years averages the uncertainties from
these two data sets.

7. OUR UNIVERSE

The estimated minimum age of our universe and the
time until collapse scale the Friedmann curve using equa-
tions (9) and (24). The maximum radius was 637 billion
light-years, 1000 billion years ago. The current radius is
estimated to be 49 billion light-years.
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Big Bang Time (10  years)
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Figure 7. This represents the evolution of our universe since the
big bang at time zero. It reached its maximum size 1000 billion
years ago. Today there remains 9.6 billion years until collapse. Its
current radius is 49 billion light-years. These values are minimum
estimates based on redshift analyses in this paper and assuming
that qo = 0.54. See text for details.

Figure 7 illustrates this evolution. The maximum ra-
dius and current age will both be greater than shown on
this graph if qo is smaller than 0.54.

8. DARK ENERGY AND DARK MATTER

The close agreement of Friedmann theory with redshift
observations makes it is unnecessary to postulate dark
energy.

Dark matter must exist since visible matter is only
a fraction of the mass required for a closed Friedmann
universe. Since the universe is more than 100 times older
than the lifetimes of typical stars, most dark matter is
likely the end result of stellar and galactic evolution.

10 This can be shown by evaluating Weinberg (1972, eq 15.3.11)
in the limit as qo → 1/2 and using the symmetry of the cycloid.
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9. MATHEMATICS AND PHYSICS

The mathematics of general relativity isn’t a physi-
cal theory until mathematical concepts such as gµν and
xµ are linked by axioms to specific physical measure-
ments. Albert Einstein took this step, just as he did for
special relativity, by asserting that measurements made
with rigid meter sticks and balance clocks are equiva-
lent to the mathematical distances and times of general
relativity. Assuming a rigid meter stick is equivalent to
assuming that atoms never change. Even as he did this
Einstein had qualms about his choice.

In his 1921 Nobel Lecture Einstein said:

. . . it would be logically more correct to be-
gin with the whole of the laws and . . . to
put the unambiguous relation to the world
of experience last instead of already fulfill-
ing it in an imperfect form for an artificially
isolated part, namely the space-time metric.
We are not, however, sufficiently advanced in
our knowledge of Nature’s elementary laws to
adopt this more perfect method without go-
ing out of our depth. (Einstein 1967, p 483)

It is intriguing that it was Einstein who discovered
vacuum permittivity depends on gravity. In 1907, there
was no general relativity, no Bohr atom, and no real un-
derstanding of photons. When these theories were later
in place, the connection provided by vacuum permittiv-
ity between spacetime curvature and atomic structure
was overlooked. Einstein (1949, p 685) knew that the
“tools for measurement do not lead an independent ex-
istence alongside of the objects implicated by the field-
equations.” What he did not know was that the solution
was already in his 1907 paper and that there was no need
of “going out of our depth” to create the more complete
general relativity he wanted, where the “tools for mea-
surement” depend on spacetime exactly as “other objects
implicated by the field-equations.”

Schrödinger (1939) published his seminal discovery
that every quantum wavelength expands and contracts
in proportion to the Friedmann radius. Schrödinger ar-
gued that if spacetime is curved as general relativity re-
quires, then its effects on quantum processes must not
be dismissed without careful investigation. Using the
equations of relativistic quantum mechanics, Schrödinger
found that the plane-wave eigenfunctions characteristic
of flat spacetimes are replaced in the curved spacetime
of the closed Friedmann universe by wave functions with
wavelengths that are directly proportional to the Fried-
mann radius.

This means that every eigenfunction changes wave-
length as the radius of the universe changes. The quan-
tum systems they describe change as well. In an expand-
ing universe quantum systems expand. In a contracting
universe they contract. The assumption is often made
that small quantum systems are isolated and that their
properties remain constant as the Friedmann universe
evolves. This assumption is incompatible with relativis-
tic quantum mechanics and with the curved spacetime
of general relativity as Schrödinger showed (Sumner and
Sumner 2000).

These changes in quantum systems may equivalently
be viewed as a logical consequence of the fact that the

energy and momentum of “isolated systems” are not
conserved. Energy and momentum change when the
spacetime curvature of the universe changes. Schrödinger
(1956, p 58) wrote:

In an expanding space all momenta decrease
. . . for bodies acted on by no other forces than
gravitation . . . This simple law has an even
simpler interpretation in wave mechanics: all
wavelengths, being inversely proportional to
the momenta, simply expand with space.11

In a contracting space, the opposite is true. All mo-
menta increase and all wavelengths, being inversely pro-
portional to the momenta, simply contract with space.

Schrödinger had a deep understanding of both wave
mechanics and general relativity. Like most physicists,
Schrödinger “knew” Hubble redshift meant that the uni-
verse is expanding, a hangover from the pre-relativistic
interpretations of redshifts originally made by Slipher
(1917) and Hubble (1929) who tentatively assumed that
all galactic redshifts are solely Doppler effects. It is
interesting to speculate how long it would have taken
Schrödinger to correctly interpret Hubble redshift if he
had asked himself the question: “Would the changes in
atoms and photons that I found change my interpreta-
tion of Hubble redshift?”

Feynman (1967, p 55) was correct when he observed
that “Physics is not mathematics, and mathematics is
not physics . . . mathematicians prepare abstract reason-
ing that’s ready to be used if you will only have a set of
axioms about the real world . . . ” Assuming that meter
sticks are rigid and atoms never change should not be
axioms in that set.

10. CONCLUSIONS

Einstein assumed that gravitational fields are equiv-
alent to uniformly accelerating coordinate systems and
showed that vacuum permittivity depends on the
strength of the gravitational field. Vacuum permittiv-
ity also changes with spacetime curvature, shifting the
energy of atoms and photons and the interpretation of
gravitational redshifts. Redshift results when blueshifted
photons are compared to atomic emissions which have
blueshifted more. For Schwarzschild geometry, redshifts
derived this way agree with conventional derivations
based on time dilations. While the approaches are differ-
ent, their mathematical predictions are identical. But for
Friedmann geometry, traditional theory ignoring atomic
shifts does not agree with the reasoning presented here,
nor does it agree with modern Hubble redshift obser-
vations. Comparisons of photons emitted long ago to
those emitted today show that the Friedmann universe
is collapsing, not expanding. Supernovae redshifts are
explained using physics from the 1920’s without invoking
ad hoc dark energy. Our collapsing universe is finite and
nearly flat. It is at least 2000 billion years old and will
end in an estimated 9.6 billion years. Most dark matter
is probably the residue of stellar and galactic evolution.
The changes in atoms and photons derived here agree
with Schrödinger’s discovery that quantum wave func-
tions expand and contract with the radius of a closed
Friedmann universe.

11 Pauli (1958, p 220) made the same observation.
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